A Study on Trust Region Update Rules in Newton Methods for Large-scale Linear Classification

نویسندگان

  • Chih-Yang Hsia
  • Ya Zhu
  • Chih-Jen Lin
چکیده

Œe main task in training a linear classi€er is to solve an unconstrained minimization problem. In applying an optimization method to obtain a model, typically we iteratively €nd a good direction and then decide a suitable step size. Past developments of extending optimization methods for large-scale linear classi€cation focus on €nding the direction, but liŠle aŠention has been paid on adjusting the step size. In this work, we explain that inappropriate step-size adjustment may lead to serious slow convergence. Among the two major methods for step-size selection, line search and trust region, we focus on investigating the trust region methods. A‰er presenting some detailed analysis, we develop novel and e‚ective techniques to adjust the trust-region size. Experiments indicate that our new seŠings signi€cantly outperform existing implementations for large-scale linear classi€cation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)

This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...

متن کامل

Trust Region Newton Method for Large-Scale Logistic Regression

Large-scale logistic regression arises in many applications such as document classification and natural language processing. In this paper, we apply a trust region Newton method to maximize the log-likelihood of the logistic regression model. The proposed method uses only approximate Newton steps in the beginning, but achieves fast convergence in the end. Experiments show that it is faster than...

متن کامل

Evaluation of Updating Methods in Building Blocks Dataset

With the increasing use of spatial data in daily life, the production of this data from diverse information sources with different precision and scales has grown widely. Generating new data requires a great deal of time and money. Therefore, one solution is to reduce costs is to update the old data at different scales using new data (produced on a similar scale). One approach to updating data i...

متن کامل

یک الگوریتم کارا برای زیر مساله‌ی ناحیه‌ اطمینان توسیع یافته با دو قید خطی

Trust region subproblem (TRS), which is the problem of minimizing a quadratic function over a ball, plays a key role in solving unconstrained nonlinear optimization problems. Though TRS is not necessarily convex, there are efficient algorithms to solve it, particularly in large scale. Recently, extensions of TRS with extra linear constraints have received attention of several researchers. It ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017